Attachment A to Resolution No. R4-2005-XXXX

Proposed Amendment to the Water Quality Control Plan – Los Angeles Region

to Incorporate a	Т
Total Maximum Daily Load for Organochlorine (OC) Pesticides, Polychlorinated Biphenyls (PCBs) and Siltation in Calleguas Creek, Its Tributaries, and Mugu Lagoon	Е
Caneguas Creek, its Tributaries, and Mugu Lagoon	N
Proposed for adoption by the California Regional Water Quality Control Board, Los Angeles Region on [Insert Date].	Т
Amendments	
Table of Contents Add:	Α
Auu.	Т
Chapter 7. Total Maximum Daily Loads (TMDLs)	
7- Calleguas Creek Watershed OC Pesticides and PCBs TMDL	I
List of Figures, Tables, and Inserts Add:	V
Chapter 7. Total Maximum Daily Loads (TMDLs) Tables	E
 7-17 <u>Calleguas Creek Watershed OC Pesticides and PCBs TMDL</u> 7-17.1 <u>Calleguas Creek Watershed OC Pesticides and PCBs TMDL</u>: Elements 	
7-17.2 Calleguas Creek Watershed OC Pesticides and PCBs TMDL: Implementation Schedule	
Chapter 7. Total Maximum Daily Loads (TMDLs) Calleguas Creek Watershed OC Pesticides and PCBs TMDL	
This TMDL was adopted by:	
The Regional Water Quality Control Board on [Insert date].	

The State Water Resources Control Board on [Insert date]. The Office of Administrative Law on [Insert date].

This TMDL was approved by:

The U.S. Environmental Protection Agency on [Insert date].

Table 7-17.1. Calleguas Creek Watershed OC Pesticides, PCBs, and Siltation TMDL: Elements

TMDL Element	Calleguas Creek Watershed OC Pesticide, PCBs, and Siltation						
	S	TMDL	,				
Problem	Eleven of fourteen re-	aches in the Calle	guas Creek Watershed				
Statement	(CCW) were identified on the 2002 303(d) list of water-quality						
	limited segments as impaired due to elevated levels of						
	_	-	polychlorinated biphenyls				
	, ,	-	1 0				
			tissue. Additionally, Mugu				
	_	-	mentation/siltation. OC				
	-		e in fish tissue and cause				
			inland waters. Siltation may				
	transport OC Pesticid	les and PCBs to si	urface waters and impair				
	aquatic life and wildl	ife habitats.					
Numeric	The following tables	provide the nume	ric targets for water, fish				
Targets	tissue, and sediment f	for this TMDL. W	ater column targets were				
	derived from the Cali	fornia Toxics Rul	le (CTR) water quality				
	criteria for protection	of aquatic life. C	Chronic criteria (Criteria				
	_	-	ere applied unless otherwise				
	noted in the table belo		ore upprior united outer wise				
	noted in the table ben	3 W .					
		Water Quality T	Sargets (ug/L)				
	Constituent	Freshwater	Marine				
	Aldrin	3.0^{1}	1.31				
	Chlordane	0.0043	0.0040				
	Dacthal	3500^{2}	NA^2				
	4,4'-DDD	NA NA	NA NA				
	4,4'-DDE 4,4'-DDT	NA 0.001	NA 0.001				
	Dieldrin	0.056	0.001				
	Endosulfan I	0.056	0.0019				
	Endosulfan II	0.056	0.0087				
	Endrin	0.036	0.0023				
	HCH (alpha-BHC)	NA	NA				
	HCH (beta-BHC)						
	HCH (delta-BHC)	NA	NA				
	HCH (gamma BHC)	0.95^{1}	0.161				
	Heptachlor Enovide	0.0038	0.0036				
	Heptachlor Epoxide PCBs	$0.0038 \\ 0.014^{3}$	0.0036 0.030^3				
	Toxaphene	0.0020	0.00020				
	¹ No chronic criteria exis	t: acute criteria are us	sed				
	No chronic or acute crit	eria exist, drinking w	vater standard of 3500 ug/L				
	adopted by Florida and A	rizona is applied for	freshwater.				
	³ PCBs in water are meas	sured as sum of sever					
	No applicable standard	A No applicable standards exist.					

T E N T A T I

Ε

Ν

T

Α

TMDL Element	Calleguas Creek Water	rshod OC Posticido	DCRs and Siltation
TWIDL Element	Caneguas Creek water	TMDL	1 CDs, and Smallon
	Fish tissue targets are de	ived from CTR hum	an health criteria for
	consumption of organism		
	described in the TMDL 7		methodology is
	Constituent Fish	n Tissue Targets (μg/Kg)	
	Aldrin	0.050	
	Chlordane	8.3	
	Dacthal	NA	
	4,4'-DDD	45	
	4,4'-DDE	32	
	4,4'-DDT	32	
	Dieldrin	0.65	
	Endosulfan I	65,000	
	Endosulfan II	65,000	
	Endrin	3,200	
	HCH (alpha-BHC)	1.7	
	HCH (beta-BHC)	6.0 NA	
	HCH (delta-BHC) HCH (gamma BHC)	8.2	
	Heptachlor	2.4	
	Heptachlor Epoxide	1.2	
	PCBs	5.3 1	
	Toxaphene	9.8	
	Applies to sum of all congential No applicable standards ex	ner or isomer or homolog cist.	or Aroclor analyses.
	Sediment targets were decontained in National Oc Administration (NOAA) (SQRT, Buchman, 1999) NOAA use only. Region science available for sedi The State Water Resourc quality objectives (SQOs TMDL, at which time the include those standards.	eanographic and Atm Screening Quick Ref . SQRTs were develoral Board staff find the ment targets to protect es Control Board may) during the Impleme	nospheric Ference Tables oped for internal bey represent the best ct beneficial uses. y adopt sediment entation Plan of this
	Constituent	Sediment Targets (ug/d Freshwater, TEL	ry kg) ¹ Marine, ERL
	Aldrin	NA	NA
	Chlordane	4.5	0.5

⁴ NOAA Screening Quick Reference Tables

TMDL Element	Calleguas Creek Watershed OC Pesticide, PCBs, and Siltation				
		TMDL			
	Dacthal	NA	NA		
	4,4'-DDD	3.5	2.0		
	4,4'-DDE	1.4	2.2		
	4,4'-DDT	NA	1.0		
	Dieldrin	2.9	0.02		
	Endosulfan I	NA	NA		
	Endosulfan II	NA	NA		
	Endrin	2.7	NA		
	HCH (alpha-BHC)	NA	NA		
	HCH (beta-BHC)	NA	NA		
	HCH (delta-BHC)	NA	NA		
	HCH (gamma BHC)	0.94	NA		
	Heptachlor	NA	NA		
	Heptachlor Epoxide	0.6	NA		
	PCBs	34	23		
	Toxaphene	NA	NA		
	Tonupliene	1111	11/1		
	¹ TEL = Threshold Effect No applicable standar		ets Range-Low.		
	The first is an annual tons/year, which will suspended sediment a	average reduction be measured at the gauge at the entran	habitat in Mugu Lagoon. In in the import of silt of 3000 IN OUS Naval Base total IN OUS Mugu Lagoon. The IN OUS Mugu Lagoon in 1400 acres of habitat in		
Source Analysis	were analyzed to esti PCBs loads to Calleg The largest source of agricultural runoff. Mas coolants and lubric electrical equipment. source of PCBs. Urb OC pesticides and PC groundwater, atmosp significant sources of	mate the magnitude (uas Creek, its trib). OC pesticides in Most PCB residue cants in transform. Atmospheric depart runoff and POCBs. Data analystheric deposition, as COC pesticides, P	s are due to past use of PCBs ers, capacitors, and other position is also a potential TWs are minor sources of		
Linkage Analysis	transformation, and ubalance model that co to their fate and trans segments and Mugu	ptake of OC pestionnects the source port in Calleguas Lagoon. The link	ceptual model for the fate, icides and PCBs and a masses of OC pesticides and PCBs Creek, its tributaries, age analysis indicates: 1) OC tissue are proportional to OC		

Ε

Ν

Т

Α

Т

Ε

Ν

Т

Α

Т

٧

TMDL Element	Calleguas Creek Watershed OC Pesticide, PCBs, and Siltation TMDL
	pesticides and PCBs concentrations in sediments; 2) OC pesticides and PCBs concentrations in water are a function of OC concentrations in sediment; and 3) OC pesticides and PCBs concentrations in sediment are a function of OC pesticides and PCBs loading and sediment transport. Because sediments store, convey and serve as a source of OC pesticides and PCBs, a reduction of OC pesticides and PCBs in sediment will result in a reduction of OC pesticides and PCBs in the water column and fish tissue. In this linkage analysis, DDE is used as a representative constituent, because DDE is consistently detected in monitoring and exceeds numeric targets in water, sediment, and tissue samples. Also, other OC Pesticides and PCBs possess similar physical and chemical properties to DDE.
Wasteload Allocations	Wasteload allocations are assigned to the Hill Canyon Wastewater Treatment Facility, Camarillo Wastewater Treatment Plant, Camrosa Wastewater Reclamation Facility, Simi Valley Water Quality Control Plant, Ventura County Wastewater Treatment Plant, NPDES stormwater permittees (including MS4, Caltrans, industrial stormwater, and construction stormwater permittees), and other NPDES permittees. For the POTWs and NPDES permittees other than stormwater permittees, daily and monthly concentration based allocations for water are developed based on requirements to meet acute and chronic in-stream targets in accordance with guidance provided in the State Implementation Plan (SIP). The Regional Board may revise final WLAs and LAs based on special studies included in the Implementation Plan. Interim wasteload allocations for water are developed based on POTW performance data as reported by the POTW NPDES monitoring programs. There is an insufficient number of detected values in the POTW NPDES data sets for statistical analysis and calculation of percentiles. Consequently, daily and monthly interim allocations are based on the maximum detected concentration of NPDES effluent data for each POTW and constituent. If there are no detected data, the interim allocation is based on the Minimum Level defined in the State Implementation Plan. For NPDES permittees, other than POTWs and stormwater permittees, waste loads are allocated as presented below. For MS4 and other stormwater permittees, concentration based allocations for sediment are developed based on CTR aquatic life criteria and fish tissue concentrations which are also based on the CTR.

TMDL Element	Calleguas Creek Watershed OC Pesticide, PCBs, and Siltation	
	TMDL	Т
	Compliance with sediment based WLAs is measured as an in-	'
	stream annual average at the base of each subwatershed where the	
	discharges are located.	l E
		_
	Interim waste load allocations for stormwater permittees are	
	developed on the 95th percentile of sediment-based concentrations	N
	collected from surface waters in the Calleguas Creek watershed.	
	When the data set for a constituent is not adequate for statistical	_
	analysis, the maximum value detected in each subwatershed is used.	
	If there are no detected data, the interim allocation is based on the	
	interim allocation for the downstream subwatershed. For	Α
	stormwater permittees, sediment based interim wasteload	
	allocations are allocated in accordance with the subwatersheds	
	where the discharges are located and are applied as annual	T
	averages.	
	uverages.	
	1. Interim and Final WLAs for POTWs	1
	1. Interim and Final WEAS for FOT WS	
	a) Interim Effluent WLAs (ng/L)	V
	Constituent POTW	
	Hill Canyon Simi Valley Moorpark Camarillo Camrosa	l E
	Chlordane 2400 ¹ 100 100 100 100	
	4,4-DDD 20 1 50 50 6 50 4,4-DDE 260 1 5 1 1 1 188 1 50	
	4,4- DDE 260 1 5 1 1 1 188 1 50 4,4-DDT 10 10 10 10	
	Dieldrin 10 10 10 10	
	PCBs 500 500 500 31 500	
	Toxaphene 500 500 500 500	
	¹ Interim wasteload allocations are based on the maximum detected value.	
	b) Final EffluentWLAs (ng/L)	
	Constituent POTW	
	Hill Canyon Simi Valley Moorpark Camarillo Camrosa	
	Daily Monthly Daily Monthly Daily Monthly Daily Monthly Daily Monthly Chlordane 1.2 0.59 1.2 0.59 1.2 0.59 1.2 0.59	
	4,4-DDD 1.7 0.84 1.7 0.84 1.7 0.84 1.7 0.84 1.7 0.84	
	4,4- DDE 1.2 0.59 1.2 0.59 1.2 0.59 1.2 0.59 1.2 0.59	
	4,4-DDT 1.2 0.59 1.2 0.59 1.2 0.59 1.2 0.59 1.2 0.59 1.2 0.59	
	Dieldrin 0.28 0.14 0.28 0.14 0.28 0.14 0.28 0.14 0.28 0.14 0.28 0.14 0.28 0.14 0.28 0.17 0.34 0.17 0.3	
	Toxaphene 0.33 0.16 0.33 0.16 0.33 0.16 0.33 0.16 0.33 0.16	
	The final WLAs will be included in NPDES permits. The Regional	
-		

TMDL Element	Callegu	as Cree	k Watersl	ned OC I		PCBs, and	d Siltation
	Board may revise final WLAs prior to the dates they are placed into permits and/or prior to the dates of final WLA achievement based on special studies and monitoring of this TMDL.						
	2. Interim and Final WLAs for Stormwater Permittees						
	WLAs for stormwater permittees are provided in the Tables below. The Mugu Lagoon subwatershed includes Duck Pond/Agricultural Drain/Mugu/Oxnard Drain #2.						
	a) Inter	im Sedi	ment WL	As (ng/g)			
	Chlordane 4,4-DDD 4,4- DDE 4,4-DDT Dieldrin PCBs Toxaphene	Mugu Lagoon 25 69 300 39 19 180	Calleguas Creek 17 66 470 110 3 3800 260	Subwate Revolon Slough 48 400 1600 690 5.7 7600 790	Arroyo Las Posas 3.3 290 950 670 1.1 25700 230	Arroyo Simi 3.3 140 170 25 1.1 25700 230	Conejo Creek 3.4 5.3 20 2 3 3800 260
	b) Final	Sedimo	ent WLAs	(ng/g) ¹			
	Chlordane 4,4-DDD 4,4-DDE 4,4-DDT Dieldrin PCBs Toxaphene	Mugu Lagoon 3.3 1.2 ² 2.1 ² 0.3 4.3 180 360	Calleguas Creek 3.3 1.2 ² 1.4 ² 0.3 0.2 120 0.6	Subwate Revolon Slough 0.9 1.2 ² 1.4 ² 0.3 0.1 130	rshed Arroyo Las Posas 3.3 1.2 ² 1.4 ² 0.3 0.2 120 0.6	Arroyo Simi 3.3 1.2 ² 1.4 ² 0.3 0.2 120 0.6	Conejo Creek 3.3 1.2 ² 1.4 ² 0.3 0.2 120 0.6
	¹ Final allocations set according to percent reduction required for achievement of fish tissue and water column targets, unless otherwise noted ² Final allocation set equal to the sediment guideline value (TEL or ERL)						
	Waste source discha limited	e loads f es enroll arge to C d to, the	Allocations For the water and under Note that the control of the	er column PDES pereek. The individu	are alloca ermits or W e latter inc al NPDES	nted to mind VDRs, while ludes, but	ich is not
	a) Final	l Month	nly Averag	e Water	Column V	VLAs (ng	;/ L)

Ε

Ν

Т

Α

Т

٧

TMDL Element	Calleguas Creek Watershed OC Pesticide, PCBs, and Siltation TMDL					
	Constituent					
	Daily Mon Chlordane 1.2 0.4 4,4-DDD 1.7 0.8 4,4-DDE 1.2 0.5 4,4-DDT 1.2 0.5 Dieldrin 0.28 0.1 PCBs 0.34 0.1 Toxaphene 0.33 0.	59 34 59 9 14				
Load Allocations	For agricultural and other nonpoint sources, sediment concentration load allocations are based on CTR aquatic life criteria and fish tissue concentrations which are also based on the CTR. Compliance with sediment based LAs is measured as an in-stream annual average at the base of each subwatershed where the discharges are located.					
	Interim load allocations are developed on the 95th percentile of sediment-based concentrations collected from surface waters in the Calleguas Creek watershed. When the data set for a constituent is not adequate for statistical analysis, the maximum value detected in each subwatershed is used. If there are no detected data, the interim allocation is based on the interim allocation for the downstream subwatershed. For nonpoint sources, sediment based interim load allocations are allocated as noted in the table below and are applied as annual averages.					
	1. Interim and Final Load Allocations WLAs for nonpoint discharges are provided in the Tables below. The Mugu Lagoon subwatershed includes Duck Pond/Agricultural Drain/Mugu/Oxnard Drain #2.					
	a) Interim Sedi	ment LAs	(ng/g)			
	Constituent	Calleguas Creek 17 66 470 110 3 3800 260	Subwater Revolon Slough 48 400 1600 690 5.7 7600 790 g/g) 1	Arroyo Las Posas 3.3 290 950 670 1.1 25700 230	Arroyo Simi 3.3 140 170 25 1.1 25700 230	Conejo Creek 3.4 5.3 20 2 3 3800 260
		` `		ech o d		
	Constituent		Subwater	rshed		

T

Ε

Ν

Т

Α

Т

٧

TMDL Element	Callegu	as Cre	ek Waters	shed OC I		PCBs, an	d Siltation
	2. Siltati Agriculti reduction which th	cations set water columns to the cation set of the cation set of the cation in sed of the cat	chargers w iment yield	less otherwisdiment guide ill received to Mugu	0.3 0.2 120 0.6 etion required e noted line value (The	EL or ERL) tion of 3,0 The basel I be detern	000 tons/yr line from mined by a
Margin of Safety	This TM conserva Basin fish t atten reduce reduce Reduce Subwedown Chood Lows most Select calcut targe	DL reliative assing percentissue contaction in ection of action of actions the external points (ERLs protections) protections the allated by the for second contact of the ections the external percentis (ERLs protections) and the ections the ections the ections the ections as the ections are extended to the ections the ections are extended to the extended to the ections are extended to the extended to th	es on an in umptions to ent reduction oncentration he over the sediment, either wate allowable ds, to ensu from upstanceshold En as numerive applicate e more string y percent r	nplicit mathroughout ons on the ons, which e past ten by basing er or fish the concentre protect ream inputification for the duction of the concentre protects.	rgin of safet its development of the grand o	Tety, by in opment, it data set of clude the ermining of the ermining of the ermining of the entration apstream see subwate and Effect ent, which ines. The concerning of the evailable, a	of water and effects of the percent reent is. ersheds ects Range in are the intration (as in numeric is the WLA
Future Growth	residents GIS anal 334,000 population	with a ysis of for the on. Acc		of 753,19 ensus data ch equals the Southe	97 (US Ce a yields a p about 44% ern Califor	nsus Bure oopulation of the comia Association	eau, 2000). In estimate of county ciation of

TMDL Element	Calleguas Creek Watershed OC Pesticide, PCBs, and Siltation TMDL
	51% per decade from 1900-2000; with growth exceeding 70% in the 1920s, 1950s, and 1960s. Significant population growth is expected to occur within and near present city limits until at least 2020. Since most of the listed OCs in the CCW are banned, this growth is not expected to increase current loads. Urban application for those OC pesticides which are still legal (dacthal and endosulfan) may increase, but overall use may decrease because urban expansion tends to reduce total acreage of agricultural land.
	Population growth may result in greater OC loading to POTW influent. This loading may be proportional, if per capita domestic water use and pesticide load per household remain constant. Increased flow from POTWs should not result in impairment of the CCW as long as effluent concentration standards are met for each POTW.
	As urban development occurs, construction activities may have a range of effects upon OC loading to the CCW. Exposure of previously vegetated or deeply buried soil might lead to increased rates of degradation and volatilization. Conversely, urbanization of open space and/or agriculture areas will bury potential sources of OC bound to sediments.
	Future growth may result in increased OC concentrations in groundwater in the CCW. This is a potential concern for dacthal, which is still used and has been found in groundwater (although current levels of datchal are significantly lower than all available targets). The effects of future growth upon PCB loads are unknown, but not likely to prove significant, since atmospheric deposition and accidental spills were the primary loading pathways. Any increase in OCs due to population growth may be offset by decreased inputs from banned OCs, as their presence attenuates due to fate and transport processes.
Critical Conditions	The linkage analysis found correlation between concentrations of OC pesticides and PCBs in water and total suspended solids (TSS), and a potential correlation between OC pesticides and PCBs concentrations in water and seasonality (wet vs. dry season). A similar correlation between sediment loading and wet weather is also noted.
	OC pollutants are of potential concern in the Calleguas Creek Watershed due to possible long term loading and food chain bioaccumulation effects. There is no evidence of short term

Ε

Ν

Т

Α

Т

I

٧

Ε

Ν

Т

Α

Т

I

V

TMDL Element	Calleguas Creek Watershed OC Pesticide, PCBs, and Siltation
	TMDL
	potential effects. However, pollutant loads and transport within the watershed may vary under different flow and runoff conditions. Therefore the TMDLs consider seasonal variations in loads and flows but are established in a manner which accounts for the longer time horizon in which ecological effects may occur. Wet weather events, which may occur at any time of the year, produce extensive sediment redistribution and transport downstream. This would be considered the critical condition for
	loading. However, the effects of organochlorine compounds are manifested over long time periods in response to bioaccumulation in the food chain. Therefore, short term loading variations (within the time scale of wet and dry seasons each year) are not likely to cause significant variations in beneficial use effects.
Implementation Plan	The final WLAs will be included in NPDES permits in accordance with the compliance schedules provided in Table 7-17.2. The Regional Board may revise these WLAs based on additional information developed through Special Studies and/or Monitoring of this TMDL. WLAs established for the five major POTWs in this TMDL will be implemented through NPDES permit limits. The proposed permit limits will be applied as end-of-pipe concentration-based effluent limits for POTWs. Compliance will be determined through monitoring of final effluent discharge as defined in the NPDES permit. The implementation plan for POTWs focuses on implementation of source control activities. Consideration of annual averaging of compliance data will be evaluated at the time of permit renewal based on available information, Regional Board policies addressing objectives averaging in place at the time of permit renewal, and US EPA approval. In accordance with current practice, a group concentration-based WLA has been developed for MS4s. The grouped allocation will
	apply to all NPDES-regulated municipal stormwater discharges in the CCW. Stormwater WLAs will be incorporated into the NPDES permit as receiving water limits measured at the downstream points of each subwatershed and will be achieved through the implementation of BMPs as outlined in the implementation plan. Should federal, state, or regional guidance or practice for implementing WLAs into permits is revised, the Regional Board may revise the TMDL to incorporate such guidance.

TMDL Element	Calleguas Creek Watershed OC Pesticide, PCBs, and Siltation TMDL
	LAs will be implemented through the State's Nonpoint Source Pollution Control Program (NPSPCP). The LARWQCB is developing a Conditional Waiver for Irrigated Lands, which includes monitoring at sites subject to approval by the Executive Officer of the Regional Board. Should adoption of the Conditional Waiver be delayed, monitoring will be required as part of this TMDL.
	Studies are currently being conducted to assess the effectiveness of BMPs for reduction of pollutants from agricultural operations. Results will be used to develop Agricultural Water Quality Management Plans, including the implementation of agricultural BMPs. Additionally, an agricultural education program will be developed to inform growers of the recommended BMPs and the Management Plan.
	As shown in Table 7-17.2, the implementation actions will be taken by agriculture dischargers located in the CCW. The implementation of agricultural BMPs will be based on a comprehensive approach to address pollutant loads discharged from agricultural operations. The Regional Board may revise these LAs based on the collection of additional information developed through special studies and/or monitoring conducted as part of this TMDL.
	A number of provisions in this TMDL might provide information that could result in revisions to the TMDL. Additionally, the development of sediment quality criteria and other water quality criteria revisions may require the reevaluation of this TMDL. Finally, the use of OC pesticides in other countries, compounded with the persistence of OC pesticides and PCBs in the environment indicate efforts to control sources and transport of OCs to receiving waters may not result in attainment of targets and allocations due to activities that are outside the control of local agencies and agriculture. For these reasons, the Implementation Plan includes this provision for reevaluating the TMDL to consider revised water quality objectives and the results of implementation studies, if appropriate.

T E N T A T I V

Е

Ε

Ν

T

Ε

Table 7-17.2 Implementation Schedule

_	Table 7-17.2 Implementation Schedule		
Item	Implementation Action ¹	Responsible Party	Tentative Date
1	Effective date of interim OC waste load allocations. ²	POTW Permittees, MS4 Permittees	Effective date
2	Effective date of interim OC load allocations. ²	Agricultural Dischargers	Effective date
3	Effective date of siltation load allocation	Agricultural dischargers, US Navy, MS4 permittees	9 years after effective date
4	Finalize and submit workplan for integrated Calleguas Creek Watershed OC Monitoring Program for approval by the Executive Officer. Monitoring workplan will include, but not be limited to, appropriate water, sediment, biota and conformational monitoring to verify compliance with targets and protection of beneficial uses.	POTW Permittees, MS4 Permittees and Agricultural Dischargers	6 months after effective date
5	Initiate Calleguas Creek Watershed OC Monitoring Program developed under Task 3 and approved by Executive Officer.	POTW Permittees, MS4 Permittees and Agricultural Dischargers	1 year after effective date
6	Submit a workplan to identify sources, including sources outside the control of local agencies, and reasonable control methods and to implement a collection program for OC pesticides and PCBs for approval by Executive Officer.	POTW Permittees, MS4 Permittees	1 year after effective date.
7	Implement a collection program and source control measures based on Task 5 study approved by the Executive Officer.	POTW Permittees, MS4 Permittees	Within 3 years of effective date.
8	Special Study #1 – Submit a workplan to quantify sedimentation in the CCW, and sediment transport to Mugu Lagoon; evaluate management methods to control siltation and contaminated sediment transport to CC, identify appropriate BMPs to reduce sediment loadings, and evaluate the effect of sediment on habitat preservation in Mugu Lagoon for approval by the Executive Officer. Additionally, this special study will evaluate the concentration of OC pesticides and PCBs in sediments from various sources/land use types. ³	POTW Permittees, MS4 Permittees and Agricultural Dischargers Naval Base, Point Mugu	Within 3 years of effective date.
9	Identify and implement appropriate BMPs and other methods to reduce sediment and contaminated sediment loading to Calleguas Creek and Mugu Lagoon in accordance with Task 7.	POTW Permittees, MS4 Permittees and Agricultural Dischargers Naval Base, Point Mugu	Within 3 years of effective date
10	Special Study #2 At discharger discretion, submit a workplan for executive officer approval to evaluate numeric targets for siltation/sedimentation to support habitat related beneficial uses in Mugu Lagoon. ³	Naval Base, Point Mugu	Within 8 years of effective date
11	Consider revision of the TMDL numeric target for siltation/sedimentation to support habitat-related beneficial uses for habitat based on Task 9.	Regional Board	Within 9 years of effective date.
12	Special study #3 – Identify Areas of High OC Concentrations Areas and Evaluate the Effects of Watershed Protection and Land Use Practices on Water Quality. Such practices include but are not limited to management of sediment reduction practices and structures, streambank stabilization, and other projects related to stormwater conveyance and flood control	Agricultural Dischargers, MS4 Permittees	Within 5 years of effective date.

[Insert date]

Ν

T

			1 agc 14
	improvements in the Calleguas Creek watershed. ³		
13	If high concentration areas and land use practices resulting in excessive OC pesticide and PCB loads are identified, in accordance with approved Special Study #3 (Task 11), implement additional erosion control measures and removal actions in those areas.	MS4 Permittees	Within 7 years of effective date.
14	Development of an Agricultural Water Quality Management Plan in conjunction with the Conditional Waiver for Irrigated Lands, or (if the Conditional Waiver is not adopted in a timely manner) the development of an Agricultural Water Quality Management Plan as part of the Calleguas Creek WMP. Implement educational program on BMPs identified in the Agricultural Water Quality Management Plan.	Agricultural Dischargers	Within 3 years of effective date.
15	Special Study #4 – Evaluation of siltation load allocations. Convene a Science Advisory Panel, to be approved by the Executive Officer, to evaluate the effectiveness of the siltation load allocation in protecting the beneficial uses of Mugu Lagoon. Science Advisory Panel will evaluate the historic and current habitat in Mugu Lagoon, and recommend a biological and habitat condition to protect habitat related beneficial uses. Study will include, but not be limited to, evaluation of appropriate habitat baseline, effectiveness of siltation load allocations on a subwatershed basis, methods to restore habitat, and effectiveness of load allocated on a subwatershed basis, if required. ³	MS4 Permittees, US Naval Base	Within 8 years of the effective date.
16	Regional Board consideration of Special Study #4 to revise the TMDL, allocations, and schedule for the siltation TMDL.	Regional Board	Within 10 years of the effective date
17	Special Study #5 – Evaluation of natural attenuation rates; evaluation of measures to enhance OC Pest and PCB removal from CCW and attainability of WLAs and LAs. ³	POTWs Agricultural Dischargers MS4 Permittees, US Naval Base	12 years after effective date
18	Special Study #6 (optional) – Examination of food web and bioconcentration relationships throughout the watershed to evaluate assumptions contained in the Linkage Analysis and ensure protection of wildlife is achieved. ³	Interested Parties	12 years after effective date
19	Based on the results of Implementation Items 1-18, if sediment guidelines are promulgated or water quality criteria are revised, and/or if fish tissue and water column targets are achieved without attainment of WLAs or LAs Regional Board will consider revisions to the TMDL targets, allocations, and schedule for expiration of Interim Wasteload and Interim Load Allocations.	Regional Board	13 years after effective date
20	Achievement of Final WLAs and LAs	Agricultural Dischargers, POTW Permittees, and MS4 Permittees	2025 3

¹ The Regional Board regulatory programs addressing all discharges in effect at the time this implementation task is due may contain requirements substantially similar to the requirements of these implementation tasks. If such requirements are in place in another regulatory program including other

TMDLs, the Executive Officer may revise or eliminate this implementation task to coordinate this TMDL implementation plan with other regulatory programs.

E N T A T I V E

Т

² Interim WLAs and Interim LAs are effective immediately upon TMDL Adoption. WLAs will be placed in POTW NPDES permits as effluent limits. WLAs will be placed in stormwater NPDES permits as instream limits. LAs will be implemented using applicable regulatory mechanisms.

³ Special studies included in the Implementation Plan are based on the TMDL Technical Documents. ⁴ Date of achievement of WLAs and LAs based on the estimated timeframe for educational programs, special studies, implementation of appropriate BMPs, and predicted trends of natural attenuation. The conditional waiver will set the timeframes for the BMP management plans.